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1 Sherrington-Kirkpatrick model
Consider the Hamiltonian

H =
∑
i<j

JijSiSj − h
∑
i

Si (1)

where the bonds Jij are quenched variables following a Gaussian distribution

P (Jij) =
1

J

√
N

2π
exp(− N

2J2

(
Jij −

J0

N

)2

). (2)

Note that its mean is J0
N and variance J2

N . It is so defined such that some quantities of the system are proportional to N ,
which is physical.

Here Jij and Si are both random variables. We assume the former to be quenched, i.e. fixed on the timescale on which
the latter fluctuates. Further, we define the average of some quantity over the Si the thermal average and denote with
< · >; the average over Jij is the configurational average and denote with [·].

Let s = {S1, S2, ..., SN}. We are interested in the configurational average of the free energy, defined as

[F (s)] = −T [logZ (s)] = −T [log
∑
{s}

exp(−βH (s))]. (3)

Here the sum is over all possible values of s. This corresponds to the Tr operator in the Nishimori text.

2 Calculating the free energy with replica method
To compute [F ], we use the exact identity

[logZ] = lim
n→0

[Zn]− 1

n
. (4)

Plug in Z = e−βH and Eq 1, write [Zn]

[Zn] =

∫ ∏
i<j

dJijP (Jij)
∑

{sα,sβ ,...,sn}

exp

β∑
i<j

Jij

n∑
α=1

Sαi S
α
j + βh

N∑
i=1

n∑
α=1

Sαi

 (5)

Now, for the variables {Jij}, plug in expressions for P (Jij) and complete the squares in the exponents to get
1

[Zn] = C1

∑
{sα,sβ ,...,sn}

exp

 1

N

∑
i<j

1

2
β2J2

∑
α,β

Sαi S
α
j S

β
i S

β
j + βJ0

∑
α

Sαi S
α
j

+ βh

N∑
i=1

n∑
α=1

Sαi

 . (6)

The constant factor does not depend on {s,J , N}. This step is the key usefulness of the replica method. We simply integrated
out the Jij and obtained an expression that does not depend on them.

The last term is not changed because it does not contain Jij . We now rewrite several things. First,
∑
α,β S

α
i S

α
j S

β
i S

β
j =

2
∑
α<β S

α
i S

α
j S

β
i S

β
j +

∑
α

(
Sαi S

α
j

)2
= 2

∑
α<β S

α
i S

α
j S

β
i S

β
j + n. Therefore

1Superscripts with α, β are not exponents.
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[Zn] = C1

∑
{sα,sβ ,...,sn}

exp

 1

N

∑
i<j

1

2
β2J2

2
∑
α<β

Sαi S
α
j S

β
i S

β
j + n

+ βJ0

∑
α

Sαi S
α
j

+ βh

N∑
i=1

n∑
α=1

Sαi

 (7)

= C1

∑
{sα,sβ ,...,sn}

exp

 1

N

∑
i<j

1

2
β2J2n+

1

2
β2J2

2
∑
α<β

Sαi S
α
j S

β
i S

β
j

+ βJ0

∑
α

Sαi S
α
j

+ βh

N∑
i=1

n∑
α=1

Sαi

 (8)

= C1 exp

(
(N − 1)β2J2n

4

) ∑
{sα,sβ ,...,sn}

exp

 1

N

∑
i<j

β2J2
∑
α<β

Sαi S
α
j S

β
i S

β
j + βJ0

∑
α

Sαi S
α
j

+ βh

N∑
i=1

n∑
α=1

Sαi

 (9)

To get the first factor, we used the fact that
∑
i<j has

N(N−1)
2 terms. Further, since we assume a large N , exp

(
(N−1)β2J2n

4

)
≈

exp
(
Nβ2J2n

4

)
. Now we look at the second exponent (after Tr). First,

1

N

∑
i<j

β2J2
∑
α<β

Sαi S
α
j S

β
i S

β
j =

β2J2

2N

∑
α<β

(∑
i

Sαi S
β
i

)2

−
∑
i

∑
α<β

Sαi S
α
i S

β
i S

β
i


=
β2J2

2N

∑
α<β

(∑
i

Sαi S
β
i

)2

− β2J2

2N

∑
i

∑
α<β

1.

We shall neglect the last term, since it is constant in {s,J , N} and simply leads to a coefficient. The same can be done for
the second term. I.e.

βJ0

N

∑
i<j

∑
α

Sαi S
α
j =

βJ0

2N

∑
α

(∑
i

Sαi

)2

− βJ0

2N

∑
i

∑
α

1,

where the last term is neglected for the same reason. Combining all the transformations, we now have

[Zn] = C2 exp

(
Nβ2J2n

4

) ∑
{sα,sβ ,...,sn}

exp

β2J2

2N

∑
α<β

(∑
i

Sαi S
β
i

)2

+
βJ0

2N

∑
α

(∑
i

Sαi

)2

+ βh

N∑
i=1

n∑
α=1

Sαi

 . (10)

Note that the right hand side here has a different coefficient from that in the RHS in Eq. 9.
The goal now is to “linearize” the quadratic terms2 in Eq.10 with the following identity (this is sometimes referred to as

the Hubbard-Stratonovich transform)

exp

(
y2

2

)
=

∫ ∞
−∞

dx√
2π

exp

(
−x

2

2

)
exp (xy) . (11)

In this identity, we introduce a normally distributed variable x to linearize the quadratic term y2. For Eq.10, we introduce

a Nqαβ for
(∑

i S
α
i S

β
i

)2

and Nmα for
∑n
α=1 S

α
i . Then, by the identity above,

exp
β2J2

2N

(∑
i

Sαi S
β
i

)2

=

∫ ∞
−∞

dNqαβ√
2π

exp

(
−β2J2N

q2
αβ

2
+ β2J2qαβ

∑
i

Sαi S
β
i

)
(12)

exp
βJ0

2N

(∑
i

Sαi

)2

=

∫ ∞
−∞

dNmα√
2π

exp

(
−βJ0Nm

2
α + βJ0mα

∑
i

Sαi

)
. (13)

Do this for all the qαβ , mα, and absort the resulting
√

2π into the constant coefficient, we have
2This is desirable because if we have

∑
{s}(exp (a1s1 + a2s2...)), then we can rewrite it as

∑
s1=±1 exp (a1s1)

∑
s2=±1 exp (a1s2) ....
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[Zn] = C3 exp

(
Nβ2J2n

4

)∫ ∞
−∞

∏
α<β

dNqαβ
∏
α

dNmα·

∑
{sα,sβ ,...,sn}

exp

−β2J2N

2

∑
α<β

q2
αβ −

βJ0N

2

∑
α

m2
α

 ·
exp

β2J2
∑
α<β

qαβ
∑
i

Sαi S
β
i + βJ0

∑
α

mα

∑
i

Sαi

 exp

(
βh

N∑
i=1

n∑
α=1

Sαi

)
.

We can integrate over qαβ ,mα instead of Nqαβ ,Nmα by multiplying everything by the Jacobians, which is a power of N .
Absorb it again into the coefficient to get

[Zn] = C4 exp

(
Nβ2J2n

4

)∫ ∞
−∞

∏
α<β

dqαβ
∏
α

dmα· (14)

exp

−β2J2N

2

∑
α<β

q2
αβ −

βJ0N

2

∑
α

m2
α

 · (15)

∑
{sα,sβ ,...,sn}

exp

β2J2
∑
α<β

qαβ
∑
i

Sαi S
β
i + β

∑
α

(J0mα + h)
∑
i

Sαi

 . (16)

For the last term, rewrite it as

N∏
i=1

∑
{sαi ,s

β
i ,...,s

n
i )

exp

β2J2
∑
α<β

qαβS
α
i S

β
i + β

∑
α

(J0mα + h)Sαi

 . (17)

Since for every i we are summing it over the same variables {sαi , s
β
i , ..., s

n
i ) over the same values (±1), and there’s no

dependence on i otherwise, all N terms in the product are the same. Using Sα to denote a “general site” on the lattice, we
rewrite this as

 ∑
{sαi ,s

β
i ,...,s

n
i )

exp

β2J2
∑
α<β

qαβS
αSβ + β

∑
α

(J0mα + h)Sα


N

≡ exp

N log
∑

{sαi ,s
β
i ,...,s

n
i )

exp (L ({qαβ ,mα}))

 (18)

where

L ({qαβ ,mα}) := β2J2
∑
α<β

qαβS
αSβ + β

∑
α

(J0mα + h)Sα . (19)

We thus obtain

[Zn] = C4 exp

(
Nβ2J2n

4

)∫ ∞
−∞

∏
α<β

dqαβ
∏
α

dmα (20)

exp

−β2J2N

2

∑
α<β

q2
αβ −

βJ0N

2

∑
α

m2
α +N log

∑
{Sα,Sβ ,...,Sn)

exp (L)

 . (21)

Importantly, the exponent is proportional to N . At the large N limit, value of the integral is determined by maximum of
the integral (method of steepest descent). Let

E := −β
2J2N

2

∑
α<β

q2
αβ −

βJ0N

2

∑
α

m2
α +N log

∑
{Sα,Sβ ,...,Sn}

exp (L) (22)

{q?αβ ,m?
α} = arg max

{qαβ ,mα}
E. (23)
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The integral is

[Zn] = C4 exp

Nβ2J2n

4
− β2J2N

2

∑
α<β

(
q?αβ
)2 − βJ0N

2

∑
α

(m?
α)

2
+N log

∑
{Sα,Sβ ,...,Sn}

exp (L)

 (24)

= C4 exp

Nn
β2J2

4
− β2J2

2n

∑
α<β

(
q?αβ
)2 − βJ0

2n

∑
α

(m?
α)

2
+

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L)

 . (25)

Now as n→∞, the exponent goes to zero. We expand the exponent around 0 to get

[Zn] ≈ 1 +Nn

β2J2

4
− β2J2

2n

∑
α<β

(
q?αβ
)2 − βJ0

2n

∑
α

(m?
α)

2
+

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L)

 . (26)

We are finally ready to plug it back into the replica identity to get

[logZ]

N
= lim
n→0

[Zn]− 1

Nn
(27)

= lim
n→0

β2J2

4
− β2J2

2n

∑
α<β

(
q?αβ
)2 − βJ0

2n

∑
α

(m?
α)

2
+

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L)

 . (28)

We now examine {q?αβ ,m?
α} more carefully. A necessary condition for them to maximize the exponent in Eq.22 is that

∂
∂qαβ

E = ∂
∂mα

E = 0. I.e.

q?αβ =
1

β2J2

∂

∂qαβ
log

∑
{Sα,Sβ ,...,Sn}

exp (L) =
1

β2J2

∑
{Sα,Sβ ,...,Sn} exp (L)β2J2∑
{Sα,Sβ ,...,Sn} exp (L)

SαSβ . (29)

=

∑
{Sα,Sβ ,...,Sn} S

αSβ exp (L)∑
{Sα,Sβ ,...,Sn} exp (L)

(30)

m?
α =

1

βJ0

∂

∂mα
log

∑
{sαi ,s

β
i ,...,s

n
i )

exp (L) =

∑
{Sα,Sβ ,...,Sn} S

α exp (L)∑
{Sα,Sβ ,...,Sn} exp (L)

. (31)

Whether these represent the maximum needs to be determined from the second derivative. This issue is visited later.

2.1 qαβ and mα as order parameters (TODO: check these identities)
It can be confirmed that

qαβ =

∑{sα,sβ ,...,sn} Sαi Sβi exp
(
−β
∑n
γ=1Hγ

)
∑
{sα,sβ ,...,sn} exp

(
−β
∑n
γ=1Hγ

)
 ≡ [〈Sαi Sβi 〉] (32)

where

Hγ =
∑
i<j

JijS
γ
i S

γ
j − h

∑
i

Sγi (33)

and

mα = [〈Sαi 〉] . (34)

3 Replica-symmetric solution
How do qαβ and mα depend on α, β? A naive guess is that, since all replicas are equivalent, at the end of the day we should
have

∀α, β : qαβ = q,mα = m.
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This is the replica-symmetric solution. Plug these expressions into that for the free energy, we have

[logZ]

N
= lim
n→0

β2J2

4
− β2J2 (n− 1)

4
q2 − βJ0

2
m2 +

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp
(
Lqαβ=q,mα=m

) . (35)

=
β2J2

4

(
1 + q2

)
− βJ0

2
m2 + lim

n→0

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp
(
Lqαβ=q,mα=m

)
. (36)

For the last term, plugging in q,m

1

n
log

∑
{sαi ,s

β
i ,...,s

n
i )

exp
(
Lqαβ=q,mα=m

)
= log

∑
{Sα,Sβ ,...,Sn}

exp

β2J2q
∑
α<β

SαSβ + β (J0m+ h)
∑
α

Sα

 . (37)

We can introduce a Gaussian variable to linearize the product SαSβ

p (ẑ) =

√
β2J2q

2π
exp

(
− ẑ

2

2
β2J2q

)
(38)

and rewrite (using the same identity from Eq.11)

1

n
log

∑
{sαi ,s

β
i ,...,s

n
i )

exp

β2J2
∑
α<β

qαβS
αSβ + β

∑
α

(J0mα + h)Sα


=

1

n
log

∑
{sαi ,s

β
i ,...,s

n
i )

∫
dzp (z) exp

(
β2J2qẑ

∑
α

Sα − n

2
β2J2q + β (J0m+ h)

∑
α

Sα

)

The −n2β
2J2q term came from (

∑
α S

α)
2 − 2

∑
α<β S

αSβ = n. Further,

1

n
log

∫
dẑp (ẑ)

∑
{sαi ,s

β
i ,...,s

n
i )

exp

(
β2J2qẑ

∑
α

Sα + β (J0m+ h)
∑
α

Sα − n

2
β2J2q

)

=
1

n
log exp

(
−n

2
β2J2q

)∫
dzp (ẑ)

∑
{Sα,Sβ ,...,Sn}

exp

(∑
α

Sα
(
β2J2qẑ + β (J0m+ h)

))

Define z ∼ N (0, 1) and Dz to be the standard Gaussian measure. Then we perform a change of variable and obtain

1

n
log exp

(
−n

2
β2J2q

)∫
Dz

∑
{Sα,Sβ ,...,Sn}

exp

(∑
α

Sα (βJ
√
qz + β (J0m+ h))

)

Now that the exponent is linear in Sα, we can perform the summation separately for each replica, i.e.

∑
{sαi ,s

β
i ,...,s

n
i )

exp

(∑
α

Sα (βJ
√
qz + β (J0m+ h))

)

=

n∏
γ=1

∑
S=±1

exp (S (βJ
√
qz + β (J0m+ h)))

= {2 cosh (βJ
√
qz + β (J0m+ h))}n

Hence the last term in Eq.36 can be written as

1

n
log

∫
Dz exp

(
n log 2 cosh (βJ

√
qz + β (J0m+ h))− n

2
β2J2q

)
. (39)

We now take the small n limit, and expand the exponential around 0
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≈ 1

n
log

{
1 + n

∫
Dz log 2 cosh (βJ

√
qz + β (J0m+ h))− n

2
β2J2q

}
(40)

Expand the logarithm around 1 to get

≈
∫
Dz log 2 cosh (βJ

√
qz + β (J0m+ h))− n

2
β2J2q. (41)

Define

H̃ (z) := J
√
qz + J0m+ h (42)

and obtain

lim
n→0

1

n
log

∑
{sαi ,s

β
i ,...,s

n
i )

exp
(
Lqαβ=q,mα=m

)
=

∫
Dz log 2 cosh

(
βH̃ (z)

)
− 1

2
β2J2q. (43)

Plug this back into Eq.36, we have a final expression for the free energy in terms of q,m

[logZ]

N
=
β2J2

4
(1− q)2 − βJ0

2
m2 +

∫
Dz log 2 cosh

(
βH̃ (z)

)
. (44)

We now set ∂q
[logZ]
N = ∂m

[logZ]
N = 0 to obtain

m =

∫
Dz tanhβH̃ (z) (45)

q = 1−
∫
Dzsech2βH̃ (z) =

∫
Dz tanh2 βH̃ (z) . (46)

4 Replica symmetry breaking and the Parisi solution

4.1 Problem with the symmetric results: negative entropy at low temperature
Here we assume J0 = h = 0. Thus H̃(z) = J

√
qz.

According to Eq.46, as T → 0, or β → ∞, q → 1. We therefore guess that near this limit, q can be linearized around
T = 0 with an unknown factor a. I.e., q = 1− aT, a > 0. Then,

lim
β→∞

∫
Dzsech2βH̃ (z) =

1

βJ

∫
Dz

(
d

dz
tanhβJz

)
=

1

βJ
Dz (2δ (z)) =

√
2

π

T

J
. (47)

The unknown a =
√

2
π/J. To compute the entropy, we first compute the free energy at this limit. Under the assumption

of J0 = h = 0, Eq.44 becomes

β[f ] = − [logZ]

N
= −β

2J2

4
(1− q)2 −

∫
Dz log 2 cosh (βJ

√
qz) . (48)

Here [f ] is the configurational average of the per-spin free energy.

Plugging in q = 1 − T
√

2
π/J, the first term gives − T

2π . For the second term3, since the integrand is even and assuming
large β ∫

Dz log 2 cosh (βJ
√
qz) = 2

∫ ∞
0

Dz log 2 cosh (βJ
√
qz) (49)

= 2

∫ ∞
0

Dz log 2
exp

(
−βJ√qz

)
+ exp

(
βJ
√
qz
)

2
(50)

≈ 2

∫ ∞
0

Dz log 2
exp

(
βJ
√
qz
)

2
≈ 2βJ

√
q. (51)

Expand √q around q = 1 to get

3This derivation is slightly different from the one presented in the book.
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∫
Dz log 2 cosh (βJ

√
qz) ≈ 2βJ (2π)

−1/2
(1− aT/2) . (52)

Adding the two terms together to get

[f ] ≈ −
√

2

π
J +

T

2π
. (53)

Since the F = E − TS, we conclude that

S = − 1

2π
. (54)

The negative entropy is inconsistent with the fact that SK models have discrete degrees of freedom (and therefore have
non-negative entropies). It was later found that this came from the assumption of replica symmetry, not the numerous
sketchy math steps that we performed4.

4.2 Stability of solutions
When deriving the free energy, we used the Method of Steepest Descent. It only works if we can maximize the exponent. In
the derivations above, we only extremized it w.r.t. qαβ ,mα. To see whether we found a maximum, we need to see whether
the Hessian is positive definite. We again assume h = 0.

Denote

yαβ := βJqαβ , x
α =

√
βJ0mα. (55)

Rewrite Eq.28 as

[f ] = −βJ
2

4
− lim
n→0

1

βn

−∑
α<β

1

2

(
yαβ

)2 −∑
α

1

2
(xα)

2
+ log

∑
{Sα,Sβ ,...,Sn}

exp

βJ∑
α<β

yαβSαSβ +
√
βJ0

∑
α

xαSα

 . (56)

Write xα = x + εα, yαβ = y + ηαβ . We expand all the xα, yαβ around the same value because that was the assumption
of replica symmetry. Then write

L0 := βJy
∑
α<β

SαSβ +
√
βJ0x

∑
α

Sα (57)

〈f〉L0 =

∑
{Sα,Sβ ,...,Sn} e

L0({Sα,Sβ ,...,Sn})f∑
{Sα,Sβ ,...,Sn} e

L0({Sα,Sβ ,...,Sn}) . (58)

Then we can start expanding [f ] to the second order. Remember that, since we’ve already extremized [f ] w.r.t. qαβ ,mα, the
first order derivatives are all zero. Also, limn→0

∑
{Sα,Sβ ,...,Sn} exp (L0) = 1.

log
∑

{Sα,Sβ ,...,Sn}

exp

βJ∑
α<β

yαβSαSβ +
√
βJ0

∑
α

xαSα


≈ log

∑
{Sα,Sβ ,...,Sn}

exp (L0) +
βJ0

2

∑
αβ

εαεβ
〈
SαSβ

〉
L0

+
β2J2

2

∑
α<β

∑
γ<δ

ηαβηγδ
〈
SαSβSγSδ

〉
L0

− βJ0

2

∑
αβ

εαεβ 〈Sα〉L0

〈
Sβ
〉
L0
− β2J2

2

∑
α<β

∑
γ<δ

ηαβηγδ
〈
SαSβ

〉
L0

〈
SγSδ

〉
L0

− βJ
√
βJ0

∑
δ

∑
α<β

εδηαβ
〈
Sδ
〉
L0

〈
SαSβ

〉
L0

+ βJ
√
βJ0

∑
δ

∑
α<β

εδηαβ
〈
SαSβSδ

〉
L0
.

Adding contributions from −
∑
α<β

1
2

(
yαβ

)2 −∑α
1
2 (xα)

2 in Eq.56, we can summarize the second-order dependence of
[f ] on ε, η (up to a positive scalar βn) as

4Complaint is my own
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∆ :=
1

2

∑
αβ

{
Dαβ − βJ0

(〈
SαSβ

〉
L0
− 〈Sα〉L0

〈
Sβ
〉
L0

)}
εαεβ (59)

+ βJ
√
βJ0

∑
δ

∑
α<β

(〈
Sδ
〉
L0

〈
SαSβ

〉
L0
−
〈
SαSβSδ

〉
L0

)
εδηαβ (60)

+
1

2

∑
α<β

∑
γ<δ

{
D(αβ)(δγ) − β2J2

(〈
SαSβSγSδ

〉
L0
−
〈
SαSβ

〉
L0

〈
SγSδ

〉
L0

)}
ηαβηγδ. (61)

Here D is the Kronecker’s delta function. D(αβ)(δγ) == 1 only if α, β = δ, γ. We now consider the Hessian G. Remember
that 〈Sα〉L0

=
〈
Sβ
〉
L0
etc.

Gαα =
∂2

∂εα∂εα
∆ = 1− βJ0

(〈
SαSβ

〉
L0
− 〈Sα〉L0

〈
Sβ
〉
L0

)
= 1− βJ0

(
1− 〈Sα〉2L0

)
≡ A

Gαβ =
∂2

∂εα∂εβ
∆− βJ0

(〈
SαSβ

〉
L0
− 〈Sα〉2L0

)
≡ B

G(αβ)(αβ) =
∂2

∂ηαβ∂ηαβ
∆ = 1− β2J2

(
1−

〈
SαSβ

〉2
L0

)
≡ P

G(αβ)(αγ) = −β2J2
(〈
SβSγ

〉
−
〈
SαSβ

〉2) ≡ Q
G(αβ)(γδ) = −β2J2

(〈
SαSβSγSδ

〉
L0
−
〈
SαSβ

〉2
L0

)
≡ R

Gα(αβ) =
∂2

∂εα∂ηαβ
= βJ

√
βJ0

(
〈Sα〉L0

〈
SαSβ

〉
L0
−
〈
Sβ
〉
L0

)
≡ C

Gγ(αβ) = βJ
√
βJ0

(
〈Sγ〉L0

〈
SαSβ

〉
L0
−
〈
SαSβSγ

〉
L0

)
≡ D

To compute these values, we need to calculate the correlation functions, including 〈S〉L0
,
〈
SαSβ

〉
L0
,
〈
SαSβSγ

〉
L0
,
〈
SαSβSγSδ

〉
L0
.

Here the p-point correlation function is defined as ∫
Dz
(

tanhβH̃ (z)
)p

(62)

In the paramagnetic phase, all p = 1, 2, 3, 4 correlation functions are zeros. The only non-zero values are A and P , which
are on the diagonal. Therefore the matrix has two eigenvalues, A and P . To make it positive-definite, we need A > 0, P > 0
and thus

1− βJ0 > 0⇒ T > J0

1− β2J2 > 0⇒ T > J.

This condition can be shown to be always satisfied in the paramagnetic phase. Thus, the solution is stable in this phase.
In the ordered phase,m = 0, q > 0. Consider possible eigenvectors ofG. Eigenvectors should have the form [εα, εβ , ..., εn, ηαβ , ..., ],

which is of dimension n(n+1)
2 . There are three forms of possible eigenvectors.

The first form, which describes one eigenvector, has ∀α : εα = ε;∀α, β : ηαβ = η. The corresponding eigenvalue is

λ1 =
1

2

{
A−B + P − 4Q+ 3R±

√
(A−B − P + 4Q− 3R)

2 − 8(C −D)2

}
. (63)

The second possible form, which describes n eigenvectors, has form εθ = a for a specific θ, ∀α 6= θ : εα = b, α = θ or β =
θ : ηαβ = c, α 6= β 6= θ = d. The corresponding eigenvalue approaches λ1 as n→ 0.

A final form, which describes n(n−1)
2 eigenvectors, has form εθ = εν = a, ηθν = c, ηθα = ηνα = d, ηαβ = e. Its eigenvalue

is λ3 = P − 2Q+R.

We can be sure that any eigenvector is in one of these forms by confirming that they define n(n+1)
2 eigenvectors in total,

which matches the number of eigenvectors for the matrix.
To make sure λ1 > 0, a sufficient (but not necessary) condition is that A−B > 0 and P − 4Q+ 3R > 0. Since

8



Figure 1: 1RSB q matrix.

A−B ∝ ∂2[f ]

∂m2
> 0, P − 4Q+ 3R ∝ −∂

2[f ]

∂q2
> 0

(the first is true because m minimizes the free energy; the second is true because q maximizes the free energy due to
issues introduced by the replica method when n < 1). Thus, λ1 > 0 is always true. Since the second eigenvalue approaches
this one, it is also positive. For the last eigenvalue to be positive, we need

P − 2Q+R = 1− β2J2 (1− 2q + r) > 0

where r is the 4-point correlation as defined in Eq.62. This leads to(
T

J

)2

>

∫
Dzsech4 (βJ

√
qz + βJ0m) . (64)

This equation is solved numerically to give the boundary where the symmetry is broken. The boundary on J0 − T plane
is termed the de Almeida-Thouless (AT) line.

5 The Parisi solution

5.1 Multi-step replica symmetry breaking (RSB)
Under the replica symmetry assumption, qαβ do not depend on α, β, and neither does mα. To break the symmetry, we need
to consider structures in the q matrix. Recall that in the replica symmetry assumption, ∀α < β : qαβ = q. We now define a
n-RSB matrix. Consider 1-RSB. We introduce an integer m1 ≤ n. As an example, consider n = 6 and m1 = 3. Then the q
matrix would look like Fig. 1.

We can perform the same procedure iteratively, introducing m2,m3..., and q2, q3, ... in the process (See Fig. 3.2 in
Nishimori). They are all integers and should satisfy

n ≥ m1 ≥ m2 ≥ ... ≥ 1. (65)

We now define a function

q(x) = qi (mi+1 ≤ x ≤ mi) . (66)

Clearly this function is defined on non-integer values. We now take the non-Kosher limit of n → 0, and thus all the m
go to 0. And then magically at this limit, we consider 0 ≤ m1 ≤ m2.. ≤ 1 (since all the m move to the left of 1 with n I
guess...?).

Also note that we maintain our replica symmetry assumption for mα.

9



5.2 First step RSB
To calculate the free energy right now, we need to go back to the expression for [Zn]. Consider the function L defined in
Eq.18. Since we are considering J0 = h = 0, the only thing left to compute is

∑
α<β

qαβS
αSβ = −1

2

q0

(
n∑
α

Sα

)2

+ (q1 − q0)

n/m1∑
b=1

(
m1∑
α∈Bb

Sα

)2

− nq1

 . (67)

Here Bb denotes the b-th block, of which there are n/m1 ones. The first term in the bracket is like filling the q-matrix
with q0; the second term is like replacing all the q0 inside blocks to q1; the last term removes the diagonal of the matrix.
Similarly, the term in the free energy expression Eq.28 is

lim
n→0

1

n

∑
α6=β

q2
αβ = lim

n→0

1

n

{
n2q2

0 +
n

m1
m2

1

(
q2
1 − q2

0

)
− nq2

1

}
= (m1 − 1) q2

1 −m1q
2
0 . (68)

For the reader’s convenience I copy Eq.28 as

β[f1RSB ] = − [logZ]

N
= − lim

n→0

[Zn]− 1

Nn
= lim
n→0

−β2J2

4
+
β2J2

2n

∑
α<β

(
q?αβ
)2

+
βJ0

2n

∑
α

(m?
α)

2 − 1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L1RSB)

 .

(69)

First, plug in Eq.68 and taking the limit for the first three terms

β[f1RSB ] =
β2J2

4

{
(m1 − 1) q2

1 −m1q
2
0 − 1

}
+
βJ0

2
m2 − 1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L1RSB) . (70)

We then plug Eq.67 into the expression for L (copied below for convenience) to get

L ({qαβ ,mα}) := β2J2
∑
α<β

qαβS
αSβ + β

∑
α

(J0mα + h)Sα. (71)

⇒ L1RSB =
β2J2

2

q0

(
n∑
α

Sα

)2

+ (q1 − q0)

n/m1∑
b=1

(
m1∑
α∈Bb

Sα

)2

− nq1

+ β
∑
α

(J0mα + h)Sα. (72)

Our goal is again to linearize L with respect to Sα. When we were doing the replica symmetric calculations, we introduced
one Gaussian variable to linearize the exponent (see Eq.38). There we only have to deal with (

∑n
α S

α)
2 and thus introducing

one variable is enough. Here we have both (
∑n
α S

α)
2, and n/m1

(∑m1

α∈Bb S
α
)2. So in total we introduce 1 + n/m1 Gaussian

variables. First, introduce a Gaussian variable u to linearize (
∑n
α S

α)
2 .

1

n
log

∑
{Sα,Sβ ,...,Sn}

exp (L1RSB)

=
1

n
log

∑
{Sα,Sβ ,...,Sn)

∫
Du exp

βJ√q0u
∑
α

Sα − n

2
β2J2q0 +

∑
Sαβ (J0m+ h) + (q1 − q0)

n/m1∑
b=1

(
m1∑
α∈Bb

Sα

)2


= −1

2
β2J2q0 +

1

n
log

∑
{Sα,Sβ ,...,Sn)

∫
Du exp

∑Sα (βJ
√
q0u+ β (J0m+ h)) + (q1 − q0)

n/m1∑
b=1

(
m1∑
α∈Bb

Sα

)2


︸ ︷︷ ︸
∆

This step is exactly the same as that for linearizing (
∑n
α S

α)
2 in the symmetric calculations, except that q is replaced

by q0 here, and that we denoted the new variable u instead of z. As it is the case before, the −n2β
2J2q term came from

(
∑
α S

α)
2 − 2

∑
α<β S

αSβ = n. We do not create an analogous term when we linearize
∑n/m1

b=1

(∑m1

α∈Bb S
α
)2 because they

are already written in the form of (
∑
α S

α)
2
.

Now, introduce a separate vb for each
(∑m1

α∈Bb S
α
)2 to obtain an expression for the second term above as
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1

n
log

∑
{Sα,Sβ ,...,}

∫
Du

n/m1∏
b=1

(∫
Dvb

)
exp

∑
α

SαβJ
√
q0u+

∑
α

Sαβ (J0m+ h) + βJ
√
q1 − q0

n/m1∑
b=1

vb

m1∑
α∈Bb

Sα

 (73)

=
1

n
log

∫
Du

∑
{Sα,Sβ ,...,Sn}

n/m1∏
b=1

{∫
Dv exp

(∑
α

Sαβ (J0m+ h+ βJ
√
q0u)

)
exp

(
βJ
√
q1 − q0v

m1∑
α∈Bb

Sα

)}
(74)

=
1

n
log

∫
Du

n/m1∏
b=1


∫
Dvb

∑
{Sα}∈Bb

exp

 ∑
{Sα}∈Bb

β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0vb

) (75)

=
1

n
log

∫
Du

n/m1∏
b=1

{∫
Dvb

{ ∑
S=±1

exp
(
Sβ
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1
}

(76)

=
1

n
log

∫
Du

{∫
Dv

{ ∑
S=±1

exp
(
Sβ
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1
}n/m1

(77)

=
1

n
log

∫
Du

{∫
Dv
{

2 cosh
(
β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1

}n/m1

(78)

=
1

n
log

∫
Du exp

{
n

m1
log

{∫
Dv
{

2 cosh
(
β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1

}}
(79)

≈ 1

n
log

{
1 +

n

m1

∫
Du log

{∫
Dv
{

2 cosh
(
β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1

}}
expand exponent around 0

(80)

≈ 1

n

n

m1

∫
Du log

{∫
Dv
{

2 cosh
(
β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1

}
expand log around 1 (81)

= log 2 +
1

m1

∫
Du log

{∫
Dv
{

cosh
(
β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

))}m1

}
pull the factor of 2 out (82)

5Letting

Ξ = β
(
J0m+ h+ βJ

√
q0u+ J

√
q1 − q0v

)
. (86)

We have

∆ = log 2 +
1

m1

∫
Du log

{∫
Dv {cosh Ξ}m1

}
. (87)

Plugging this back into the expression for β[f1RSB ] to get

β[f1RSB ] =
β2J2

4

{
(m1 − 1) q2

1 −m1q
2
0 + 2q1 − 1

}
+
βJ0

2
m2 − log 2− 1

m1

∫
Du log

{∫
Dv {cosh Ξ}m1

}
. (88)

This is now a function of q0, q1,m,m1 (m is the magnetization and m1 is the block size!). We now need arg max for all
four variables. Differentiating β[f1RSB ] w.r.t. them and setting the derivatives to zero to get

m∗ =

∫
Du

∫
Dv {cosh Ξ}m1 tanh Ξ∫

Dv {cosh Ξ}m1
(89)

5For the last few lines, it may be useful to compare to the symmetric calculations below
Hence the last term in Eq.36 can be written as

1

n
log

∫
Dz exp

(
n log 2 cosh (βJ

√
qz + β (J0m+ h))−

n

2
β2J2q

)
. (83)

We now take the small n limit, and expand the exponential around 0

≈
1

n
log

{
1 + n

∫
Dz log 2 cosh (βJ

√
qz + β (J0m+ h))−

n

2
β2J2q

}
(84)

Expand the logarithm around 1 to get ∫
Dz log 2 cosh (βJ

√
qz + β (J0m+ h))−

n

2
β2J2q. (85)
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q∗0 =

∫
Du

(∫
Dv {cosh Ξ}m1 tanh Ξ∫

Dv {cosh Ξ}m1

)2

(90)

q∗1 =

∫
Du

∫
Dv {cosh Ξ}m1 {tanh Ξ}2∫

Dv {cosh Ξ}m1
. (91)

Apparently, the condition for m1 is not important (since we consider multi-step RSB anyways) It can be verified, by again
computing the Hessian of β[f1RSB ] w.r.t. these four parameters that negative entropy occurs again at low temperatures.

6 Thouless-Anderson-Palmer (TAP) equations
The TAP equations are approximate equations of state for the local magnetization mi for every i. One way to derive them
is through Plefka expansions. Recall definition of the free energy (for a specific J)

F (s) = −T logZ (s) = −T log
∑
{s}

exp(−βH (s)). (92)

Consider the constrained optimization problem where we’d like to minimize H(s) while specifying the thermal averages
of s (i.e. the magnetization). We obtain a surrogate Hamiltonian (i.e. the Lagrangian)

H̃ (s, α,m) = αH (s)−
∑
i

λi (Si −mi)

where the {λi} are Lagrange multipliers enforcing the constraints. The surrogate free energy becomes

F̃ = −T log
∑
{s}

exp
(
−βH̃ (s, α,m)

)
(93)

= −T log
∑
{s}

exp

(
−αβH (s) + β

∑
i

λiSi − β
∑
i

λimi

)
(94)

= −T log

exp

(
−β
∑
i

λimi

)∑
{s}

exp

(
−αβH (s) + β

∑
i

λiSi

) (95)

= −T log
∑
{s}

exp

(
−αβH (s) + β

∑
i

λiSi

)
−
∑
i

λimi. (96)

The idea here is the following. The true Hamiltonian would have α = 1. We expand F̃ around α = 0, and then plug in
α = 1 to get

F̃ (α = 1) ≈ F̃ (α = 0) +
dF̃

dα

∣∣∣
α=0

+
1

2

d2F̃

dα2

∣∣∣
α=0

. (97)

Denote 〈·〉H̃ as the thermal average with H̃ as the Hamiltonian.

F̃ (α = 0) = −T log
∑
{s}

exp

(
β
∑
i

λiSi − β
∑
i

λimi

)

=
∑
i

λimi − T log
∑
{s}

exp

(
β
∑
i

λiSi

)

=
∑
i

λimi − T log
∑
{s}

exp

(
β
∑
i

λiSi

)

=
∑
i

λimi − T log
∏
i=1

2 cosh (βλi)

=
∑
i

λimi − T log
∏
i=1

2 cosh (βλi)
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We now solve for the {λi} from the constraint equations {mi = 〈Si〉H̃}. Since the only dependence of H̃ on Si at α = 0
is through −λiSi

mi = 〈Si〉H̃ =
eβλi − e−βλi
eβλi + e−βλi

= tanh (βλi) (98)

⇒ λi = T tanh−1mi =
T

2
(log (1 +mi)− log (1−mi)) . (99)

Then

cosh (βλi) = cosh
(
tanh−1 (mi)

)
=

1√
1−m2

i

(100)

F̃ (α = 0) =
T

2

∑
i

mi (log (1 +mi)− log (1−mi))− T
∑
i

log
2√

1−m2
i

(101)

=
T

2

∑
i

mi (log (1 +mi)− log (1−mi))− T
∑
i

log 2 +
T

2
log
(
1−m2

i

)
(102)

=
T

2

∑
i

mi (log (1 +mi)− log (1−mi))− T
∑
i

log 2 +
T

2
(log (1−mi) + log (1 +mi)) (103)

=
T

2

∑
i

{mi log (1 +mi)−mi log (1 +mi) + log (1 +mi) + log (1−mi)− 2 log 2} (104)

=
T

2

∑
i

{(1 +mi) log (1 +mi) + (1−mi) log (1−mi)− (1 +mi + 1−mi) log 2} (105)

= T
∑
i

{
1 +mi

2
log

(
1 +mi

2

)
+

1−mi

2
log

(
1−mi

2

)}
(106)

∂F̃

∂α

∣∣∣∣∣
α=0

= 〈H (s)〉H̃

∣∣∣∣∣
α=0

= −1

2

∑
i 6=j

Jijmimj −
∑
i

himi (107)

∂ ˜2F

∂α2

∣∣∣∣∣
α=0

= −β

〈
H

(
H − 〈H〉H̃ −

∑
i

∂λi
∂a

(Si −mi)

)〉
H̃

∣∣∣∣∣
α=0

(108)

∂λi
∂a

∣∣∣∣∣
α=0

=
∂

∂a

∂F̃

mi

∣∣∣∣∣
α=0

= −
∑
j 6=i

Jijmj . (109)

∂ ˜2F

∂α2

∣∣∣∣∣
α=0

= −β

〈
H

H − 〈H〉H̃ +
∑
i

∑
j 6=i

Jijmj (Si −mi)

〉
H̃

∣∣∣∣∣
α=0

(110)

= −β

〈
H

H +
1

2

∑
i6=j

Jijmimj −
∑
i 6=j

Jijmimj +
∑
i 6=j

JijSimj

〉
H̃

∣∣∣∣∣
α=0

(111)

= −β

var (H)H̃ +

〈
−1

2

∑
i6=j

Jijmimj +H
∑
i6=j

JijSimj

〉
H̃

 (112)
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