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The Gibbs distribution states that at constant temperature, the probability
of a system being in a specific state s is related to the energy of this state H(s)
by

Prob(s) ∝ e−
H(s)
kBT , (1)

where T is temperature and kB is the Boltzmann constant. Why does it
have this specific form?

1 A system with fixed energy
Let s denote state of the system. For example, if the system is composed of
N particles in 3D space, s may be a 6N -dimensional vector with the first 3N
describing momenta and the second 3N describing positions.

As the particles move around, s will change over time. Their dynamics are
governed by Newtonian laws, but analyzing their trajectories over time will be
difficult. We take advantage of the fact that total energy of all balls is conserved,
and think about all the possible s that give the same energy1.

Intuitively, the “number” of possible s depends on E. For example, if the
particles only have kinetic energy and E = 0, there is only one possible state
where all particles have zero momenta. On the other hand, for E > 0 we
can have all the balls moving slowly, one ball moving quickly, or something in
between. Wwe would like to rigorously define this “number” as a state space
density.

Think about the space of all s2. Let V (E) denote the volume in this space
corresponding to all s with energy less or equal to E. Then define density as

Ω (E) =
dV (E)

dE
= lim
δE→0

V (E + δE)− V (E)

δE
. (2)
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1Physicists call this collection of s giving rise to the same energy the microcanonical

ensemble.
2We are assuming that s takes on continuous values
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Given this, the volume of possible s with energy between E,E+ δE is given
by δEΩ(E). For brevity, this will be referred to as the volume at E3.

So far, we haven’t said anything about probabilities. Here we make a crucial
assumption: for a given system E, the probability density function (PDF) of
s is zero outside the δEΩ(E) volume and uniform inside it. Before seeing how
this leads to the Gibbs distribution, we first need to give a careful definition of
temperature.

2 A definition of temperature
Intuitively, two objects in contact with each other will stop transferring heat
when they have the same temperature. Here we see how we can define temper-
ature in a way that this observation arises from our analysis above.

Arbitrarily divide the system into two parts, described by s1, s2. Energy
of each part is given by H1(s1) = E1and H2(s2) = E2. Since the total energy
is fixed, E1 + E2 = E. Clearly, E1 can take on different values. What is the
probability density function of it? We can derive it by again thinking about
volumes in state space.

If the first part is at s1, the second part should have energyH2(s2) = E−E1.
We can now just look at the volume in s2 space at E − E1. Repeating the
calculation in Eq.2, we can express this volume as δEΩ2 (E − E1), where Ω2 is a
density function for s2. Analogously, we have a density function for s1, Ω1(E1),
such that δEΩ1 (E1) is the volume in s1 space at E1.

To derive the volume associated with H1 (s1) = E1, we express Ω (E) in
terms of Ω1 (E1) and Ω2 (E2). Let H(s) denote energy of the entire system.

Ω (E) = δ−1E

∫
E<H(s)<E+δE

ds = δ−1E

∫
E<H(s)<E+δE

ds1ds2 (3)

=

∫
ds1

(
δ−1E

∫
E−H1(s1)<H2(s2)<E+δE−H1(s1)

ds2

)
(4)

=

∫
ds1Ω2 (E −H1 (s1)) split the space of s1into volumes of all possible energy levels

(5)

=

∫
dE1

(
δ−1E

∫
E1<H1(s1)<E1+δE

ds1

)
Ω2 (E −H1 (s1)) =

∫
dE1Ω1 (E1) Ω2 (E − E1) .

(6)

Note that the integrand is the volume corresponding to E1. Thus
3Strictly speaking, since s takes on continuous values, the volume of s related to every

energy is 0. By volume at E, I’m referring to energy between E and E + δE . This is
analogous to how the probability of a continuous random variable taking on any value is 0,
but the probability density is non-zero.
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Prob(E1) =
Ω1 (E1) Ω2 (E − E1)

Ω(E)
. (7)

It turns out that Prob(E1) is sharply peaked around its maximum4. The
value of E1 that maximizes it, E∗1 , should satisfy

0 =
d

dE1
Ω1 (E1) Ω2 (E − E1)

∣∣∣∣
E∗

1

=
dΩ1

dE1

∣∣∣∣
E∗

1

Ω2 (E − E∗1 ) +
dΩ2

dE1

∣∣∣∣
E∗

1

Ω1 (E∗1 )

(8)

=
dΩ1

dE1

∣∣∣∣
E∗

1

Ω2 (E − E∗1 )− dΩ2

dE2

∣∣∣∣
E−E∗

1

Ω1 (E∗1 ) (9)

⇒ 1

Ω1 (E∗1 )

dΩ1

dE1

∣∣∣∣∣
E∗

1

=
1

Ω2 (E − E∗1 )

dΩ2

dE2

∣∣∣∣∣
E−E∗

1

. (10)

Define S (E) = kB log Ω (E)5.The above equation can be rewritten with S

dS1

dE1

∣∣∣∣∣
E∗

1

=
dS2

dE2

∣∣∣∣∣
E−E∗

1

. (11)

What does E∗1 mean? It means that the first part will very likely have energy
level E∗1 and stay there, and the second part will have E −E∗1 . In other words,
they are not transfering energy to each other. Thus, this equality is something
satisfied when both parts have the same T . We thus define the temperature as

1

T
=
dS

dE

∣∣∣∣∣
V,N

, (12)

where we specify that this derivative is taken assuming constant volume, V ,
and number of particles N .

3 Gibbs distribution: system at constant tem-
perature

So far we have focused on systems with a fixed total energy. We now consider
systems at a fixed temperature6. A more concrete way to think about it is to
think about a system in a heat bath. This is now like the pair of systems we
considered above, with state vectors s1, s2. However, here we are going to focus
on the first system. What is the probably of our system being in state s1? It

4This can be checked by Taylor expansion around E1
5This is the thermodynamic entropy.
6Canonical ensembles
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should the volume of system 2 having energy E −E1, divided by the volume of
the entire system having energy E.

Prob (s1) ∝ Ω2 (E − E1) = eS2(E−E1)/kB . (13)

Now consider two states, s1 = sA and s1 = sB. To see which state is more
likely, we can take the ratio of their probability density, yielding

Prob(sA)

Prob (sB)
= ek

−1
B [S2(E−EA)−S2(E−EB)]. (14)

I mentioned previously that fluctuation in E1 is small. Therefore, E − EA
and E −EB are close. In addition, we assume the temperature of system 2, i.e.
our heat bath, to be constant. In other words,

dS2

dE2

∣∣∣∣∣
E2=E−EA

=
dS2

dE2

∣∣∣∣∣
E2=E−EB

=
1

T
. (15)

We thus write

S2 (E − EA)− S2 (E − EB) ≈ dS2

dE2
(EB − EA) = T−1 (EB − EA) . (16)

Plugging this back into Eq.14, we have

Prob(sA)

Prob (sB)
= ek

−1
B T−1(EB−EA). (17)

In other words,

Prob (sA) ∝ e−k
−1
B T−1EA . (18)

4 Further reading
Chapter 3, 6 in James Sethna’s Statistical Mechanics: Entropy, Order Parame-
ters, and Complexity.
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